Go back to article: Problem/science/society

The recent past

In science communication studies in the last thirty years, we have moved from understandings that were sufficiently expressed in the linear ‘transmission’ models of early communications studies to a more socialised, critical perspective that is captured in sociologist Stephen Hilgartner’s paper on the ‘dominant model’ – a paper that remains, 26 years on, among the top ten most cited papers published in the leading journal Social Studies of Science (Hilgartner, 1990). This model says something about perceived power, and it identifies a mind-set that sees science communication as about scientists handing down knowledge to journalists who use it to remedy the public’s knowledge deficit, and is agitated when these latter two groups seem not to be playing their part: journalists changing the stories they were given, and the public persistently scoring poorly on knowledge quizzes about science (Gregory and Lock, 2008).

Hilgartner’s model problematised the transmission models and their progeny in practice, and raised the challenge of how we might think instead. One response to this challenge came in 1995 from historian and communication academic Bruce Lewenstein, whose ‘web’ model and its modifications have proved fruitful in research as well as in practice, and of course prefigure the ‘network’ models of the end of the century (Lewenstein, 1995; Gregory, 2003). In the web, as in the network, many kinds of actors speak and many listen, and many do both. Lewenstein’s paper showed science communication as embedded within the broader complex of public communication, with its established and changing values, professions, traditions and genres.

One reaction to the kind of science communication characterised in Hilgartner’s dominant model, during the flurry of interest in the public understanding of science in the mid-1980s in the UK, was a programme of social research, which was published in the mid-1990s. Involving such influential scholars as Alan Irwin, Hilary Rose, Brian Wynne and Steve Yearley, it explored cases where laypeople and experts encountered each other in real-life situations, confronting real-life problems (Irwin and Wynne, 1996). The researchers in this programme consistently found that, in the real world, encounters about science were conversations rather than lectures, and they were broad-ranging conversations in which scientific knowledge jostled with values, expectations, experience and common sense. Nor were these each originating with the usual suspects: all parties had knowledge, values, opinions and facts to share. The case studies showed scientists and non-scientists in face-to-face situations, having conversations about, among other things, the cognitive content of science. The analyses explored how knowledges and expertise are framed and nuanced by institutional relationships and cultural contexts. Emerging from this research programme was an idea known as the contextual model, which expressed that what we know and tell, and how we interact with others’ knowledges, depend on our personal, social and institutional contexts.

Classic studies showing this contextual frame included Rose and Lambert (1996) on familial hyperlipidaemia, an inherited condition where people’s knowledge – and their ideas about what was worth knowing – came as much from their lived experience as from their doctors. Sociologist Brian Wynne’s classic case study records how Cumbrian sheep farmers, in the aftermath of Chernobyl, asserted not only their values and traditions to the influx of health-and-safety experts, but also their detailed and precise knowledge of local weather, soil, animals and rock, which contrasted with the universalised generalisation of the experts; and the apprentices at the Sellafield nuclear power station showed that sometimes it is usefully respectful to knowledgeable colleagues to let them to do the knowing, and maintain one’s own ignorance (Wynne 1996).

This work was disruptive: firstly, it problematised the persistent notion that the explanation for the perceived under-valuing of science in British society was that the public knew nothing about science. It also problematised the idea that rejecting or ignoring scientific knowledge was a negative stance – clearly, this could indicate a positive relationship with scientific expertise. At the same time, quantitative data showed that high levels of scientific knowledge did not correlate in any straightforward way with positive attitudes to science (Evans and Durant, 1995; Allum et al, 2008). Knowledge became a non-simple dimension in the science-society relationship; and if it was implicated in poor social relations, it was hard to see clearly how.

Component DOI: http://dx.doi.org/10.15180/160607/003