Go back to article: Problem/science/society

What can be done about this?

While science communication reinvents itself in public engagement, and all the resources are committed to dialogue about innovations with highly selected participants and producing its unmediatisable products, scientists are reclaiming the public sphere, where one-way communication remains the ‘common sense’. While, traditionally, scientists have branded as sensationalist the image of the mushroom cloud and the vivisected dog, in the post-industrial society, scientists are asking us to experience the image to feel good about the future: the happy blue-sky and green-leaf images of synthetic biology are examples (see Wilson Center, 2016).

Figure 2

Computer graphic showing a crane and a tree against a blue sky with the title Synthetic Biology Project

In this example of research institute branding, synthetic biology is brought to life with a visual rhetoric of a better future.

The discourse of synthetic biology has been described as ‘playful’ (Calvert, 2013), and two of its leading scientists play themselves in a super-hero style comic (Endy et al, 2005). In the UK, a national dialogue about synthetic biology took place in 2010, but not because it was burning issue: only a few per cent of the UK public had ever even heard of it (Bhattachary et al, 2010).

So while we have moved from top-down communication to a policy of more democratic forms, we are still subject to ‘top-down’ behaviour in the choice of ‘problems’ we communicate about. In his 1993 paper, Martin listed the serious problems in the world where science and scientists are or could be players: war; repression; poverty and inequality; and patriarchy (where he notes that, while feminist critiques are one of his field’s academic success stories, they seem to have made no difference whatsoever to the problem). Martin also acknowledges that in the areas of environment and health, there has been some synergy between activism and academic critiques, and suggests there are lessons to be learned there. We might ask, from today’s standpoint, whether one of these lessons is that it is the public’s knowledge about and interest in health and the environment that has made this difference.

Martin’s perspective, from the 1970s to the 1990s, provides a frame for us, a further twenty years on. The unarguable good of democracy that is public engagement’s flag of convenience is also served by Martin’s suggestion of a simple solution to this problem: first, he argues, ‘talk to people to find out whether there is any social analysis of science and technology that they think would be useful’. ‘Rather than studying things that are “intellectually interesting”’, he writes, ‘the aim should be to find out what is intellectually stimulating about things that people consider important.’ It is hard to imagine how a public dialogue about synthetic biology could have arisen in such circumstances. On the other hand, it is possible that, for example, sorting out clean water for Africa might be something that people consider important. This is a 150-year-old technology (supplying drinkable water), drawing on scientific insights from 350 and 150 years ago (minuscule beasts live in water, and can make us ill), all of which we learn about as children and experience in our everyday lives.

Figure 3

A colour engraving of a shocked woman of the early 1830s looking at the microscopic life present in a sample of Thames water

The science and technology of clean water are long-standing, uncontroversial and robust.

Monster Soup, 1828

Coloured satirical engraving by William Heath (1795–1840), also known by his pseudonym Paul Pry, showing a lady discovering the quality of the Thames water. By the 1820s, public concern was growing at the increasingly polluted water supply taken from the Thames in London. In 1831 and 1832 the city experienced its first outbreaks of cholera.

In the West we consider clean water a fundamental civil right, and, if the supply is interrupted, we call out the Army, who bring it in bottles and tanks. Clean water could bring greater health benefits in Africa than an AIDS vaccine and a cure for cancer combined, as well as building stable, self-sufficient communities (and, by the way, supporting local and global economies). It is intellectually fashionable to think about gender inequalities – or, as Martin put it in a less symmetrical era, ‘patriarchy’ – but the African woman who is raped in the bushes where she has gone to find a private place to pee will be better off with a toilet now than with an academic monograph or a public engagement at any time, or even with a promise of a new technology: the new wonder-stuff graphene, claim the entrepreneurs, will clean our water in a market worth $2.8BN (G2O, 2016). We could already supply clean water using the means we have now, and this might make good sense to the great many people. But we do not do it now. Unfortunately, there is no money in it.

Component DOI: http://dx.doi.org/10.15180/160607/009