Go back to article: From 2D to 3D: the story of graphene in objects

'Flatland: A Romance of Many Dimensions'

Figure 6

First edition copy of the novel Flatland a romance of many dimensions from 1884

First edition copy of the novel Flatland: A Romance of Many Dimensions by Edwin A Abbott, 1884. Personal copy owned by Kostya Novoselov

Flatland: A Romance of Many Dimensions is a satirical novel by Edwin A Abbott, written in 1884. Novoselov mentions it in his Nobel lecture: ‘Much like the world described in Abbott’s Flatland, graphene is a two-dimensional object. And, as “Flatland” is “a romance of many dimensions”, graphene is much more than just a flat crystal’ (Novoselov, 2010a, p 106). In an 1884 science-joke, Abbott wrote the novel under the pseudonym ‘A. Square’. Flatland is socially satirical and scientifically whimsical.

The inclusion of this book in the Wonder Materials exhibition introduces the idea that people have been thinking imaginatively about dimensionality for hundreds of years. As the first 2D material, graphene resonates with Abbott’s notion of ‘Flatland’, and encourages exploration of a 2D material or a 2D world. The sense in which graphene can be described as two-dimensional is due to the way the electrons behave – they move on a flat plane. Geim explains that ‘Graphene is an ultimate incarnation of the surface: It has two faces with no bulk in between’ (Geim, 2009, p 1532).

The specific book included in the Wonder Materials exhibition is Novoselov’s own first edition copy, demonstrating the fact that he takes inspiration from non-science sources, and that his science practice is informed by engagement with literature. He explains in his Nobel lecture that he has always been a keen reader, childhood favourites including Boris Pasternak, Alexander Pushkin, Jack London, H G Wells, Jerome K Jerome, Lewis Carroll and Mark Twain (Novoselov, 2010b). His Nobel lecture was titled ‘Graphene: Materials in the Flatland’ and his Nobel autobiography begins with Lewis Carroll quotes from Alice’s Adventures in Wonderland (Carroll, 1865) and Through the Looking Glass (Carroll, 1871).

Novoselov’s figurative characterisation of the world of graphene and 2D materials research as an adventure in a new flatland reinforces the key exhibition message that scientific process can be creative and playful. This message inspires wider engagement with science because it challenges the perception that science is just about maths and labs. These objects demonstrate the fact that Novoselov, a Nobel Prize-winning scientist, sees an inextricable relationship between his passions for literature and science. By including these objects in the exhibition, we encourage visitors to see imagination and science as not only related, but interdependent. We are demonstrating especially to younger visitors that choosing a career in science does not preclude engagement with other modes of engagement and expression, thereby promoting the aim of the Science Museum Group to inspire increased science engagement.

We know from the evaluation on the exhibition compiled by the Science Museum Group Visitor Insight team that visitors enjoyed seeing personal objects in the exhibition. However, another thing that came through strongly in the evaluation report was that visitors felt frustrated; they had been hoping ‘to see, or even touch graphene’ (Neal, 2017). Intangibility is one of the key challenges in exhibiting contemporary science. In the next section, I will look at some of the objects we displayed to bring out the real-life process of science – another of the methods we used to make an intangible nanomaterial feel more real for visitors.

Component DOI: http://dx.doi.org/10.15180/181004/008