Go back to article: From 2D to 3D: the story of graphene in objects

Representing scientific approach using objects

By asking: ‘How effective is the exhibition as a means of communicating current research to the public?’, Anastasia Filippoupoliti (2010, p 12) problematises the very notion that we can communicate science knowledge in an exhibition. According to Museum of Science and Industry audience research, the average dwell time in the Wonder Materials exhibition was 23 minutes. In that short space of time it is unlikely that someone will concentrate and commit to attempting to grasp difficult scientific theory they may not have encountered before. Instead, we aimed to stimulate interested and curiosity by putting the emphasis on personal stories, using objects which would resonate with visitors and give them a reason to care about the story of graphene.

The next three objects this paper discusses are not science objects. They were included in the exhibition because they provide insight into the personality of the scientists. Looking carefully at these objects exposes a surprising non-scientific aspect to the material culture of contemporary science – the significance of context, approach and personality. Museum professionals know that visitors respond to ‘people stories’ in exhibitions as they increase our ability to identify with the makers or users of objects. Personal stories help us to understand science as an accessible human endeavour rather than an isolated profession done behind closed doors. One of the strengths of working with contemporary science is that the scientists are available for museum professionals to engage with, and the personal stories can be represented using objects which make the scientists feel very present in the display. A recent example of this approach at the Science Museum was the acquisition of objects relating to the discovery of the Higgs boson particle. Like graphene, this was an area of physics very challenging to represent in objects for a museum collection or exhibition. The equipment at CERN is huge and unavailable, while the physics itself is nanoscale and intangible. To represent the story, curators at the Science Museum acquired, amongst other things, the champagne bottle emptied by Professor Peter Higgs and colleagues on the evening of 3 July 2012, in a celebration prior to CERN’s announcement the next day regarding the discovery of a particle consistent with the Higgs boson.

Science Museum Group exhibitions have used personal, everyday objects as a method for making contemporary science exhibitions engaging and immersive for visitors. Writing about the experience of curating the Collider exhibition, Alison Boyle and Harry Cliff explain that recreations of scientists’ offices allowed the curators of the Collider exhibition to provide ‘a rich and light-hearted portrait of daily life at CERN, including conference posters, in-jokes, bus schedules, adverts for the table tennis club and personal effects like an abandoned pair of shoes and a cardigan’ (Boyle and Cliff, 2014). Boyle goes on to quote Jordanova, ‘It is the responsibility of science museums to explain how science comes about’ (Jordanova, 2014); showing the reality of day-to-day work can help to temper heroic representations of science and scientists.

At the heart of the graphene story were two scientists with an interesting story, potentially providing a hook for engaging visitors. In The Rise, Sarah Lewis (2014) characterises Geim and Novoselov as ‘Deliberate Amateurs’. She remarks on the passion and sense of adventure they demonstrate in the way they use their knowledge and expertise to explore unfamiliar fields. In Geim’s opinion, ‘The biggest adventure is to move into an area in which you are not an expert’. He explains in his Nobel Lecture that he didn’t want to get stuck in one field for his whole scientific career, losing inspiration and getting stale: ‘Sometimes I joke that I am not interested in doing re-search, only search’ (Lewis, 2014, p 147). He goes even further, stating that it is ‘Better to be wrong than boring’ (Geim, 2010, p 76).

In the 1990s whilst at the University of Nijmegen in the Netherlands, Geim began conducting what came to be known as his ‘Friday Night Experiments’ where his team investigated unfamiliar areas of science. He felt that they were entering relatively unknown territory, questioning things people who work in that field have stopped bothering to ask:

I jump from one research subject to another every few years. I do not want to study the same stuff ‘from cradle to coffin’, as some academics do. To be able to do this, we often carry out what I call ‘hit-and-run experiments’. Some crazy ideas that should never work and, of course, they don’t in most cases. However, sometimes we find a pearl. This research style may sound appealing but it is very hard psychologically, mentally, physically, and in terms of research grants too. But it is fun.
(Geim, interviewed for Essential Science Indicators, 2006)

One of the first successes to come out of the Friday Night Experiments was when Geim demonstrated diamagnetic force by levitating a live frog in a very powerful electromagnet. Following publication of this funny yet genuinely scientifically interesting experiment (Berry and Geim, 1997), he was awarded a coveted IgNobel Prize from Improbable Research for research that ‘makes people laugh and then makes them think’ (Improbable Research, 2010). Geim is the only person to have won both an IgNobel Prize and the Nobel Prize, and stated that he is ‘actually quite proud’ of his IgNobel Prize (Improbable Research, 2010).

Video 1

Still image of a video of a frog being levitated

‘However quirky, [the flying frog] has become a beautiful symbol of ever-present diamagnetism’ (Geim, 2010, p 74)

Component DOI: http://dx.doi.org/10.15180/181004/005