Go back to article: From 2D to 3D: the story of graphene in objects

The Graphene Light Bulb

Figure 11

Colour photograph of a graphene lightbulb in box

The Graphene Light Bulb, 2016. Made by Graphene Lighting plc. Donated by The University of Manchester

The decision to display commercial products enhanced by graphene exposes a tension in the conceptual strategy adopted by the curatorial team. Initially, the exhibition did not contain commercial products, as the curators were determined not to display ‘yet another object onto which celebratory high-tech fantasy can be projected’ (Barry, 2001: 111). Our approach was rational, analytical, even critical – as discussed earlier we were aiming to portray the field of graphene research as ‘a domain which was still in the making’ (Laurent, in Filippoupoliti, 2010, p 190). However, interim audience research undertaken in April 2017 indicated that visitors were disappointed that they were not able to see graphene products in the exhibition. In response, we added a further two display cases, containing a total of eight products, prototypes and samples of graphene-enhanced products either on sale or in development. We considered displaying the performance equipment such as tennis racquets, skis and fishing rods which were already available in 2016. As discussed in the introduction, we were determined not to add to unrealistic expectations heaped on graphene, however graphene does have great future potential. This luxury sports equipment arguably contained graphene primarily for marketing purposes, and therefore did not resonate with our narrative concept for the Wonder Materials. If we were going to display graphene-enhanced products, it would be those which could have a global impact and/or would be familiar and relatable for all visitors.

The Graphene Light Bulb made by Graphene Lighting plc was the first commercial application of graphene to emerge from the UK. The graphene makes the light bulb work better: this lamp lasts twice as long and uses less energy than a normal LED lamp because the LEDs are coated in graphene to dissipate the heat more efficiently. This object, presented in the exhibition with its plastic box, is an example of a graphene-enhanced item now in mass production, and is available to buy online. Since graphene was isolated, one of the biggest challenges has been finding methods to produce it at high quality on an industrial scale so that it can be used in commercial applications. While the sticky tape method was very useful for researchers in the lab first testing the properties of graphene, it is not suitable for entrepreneurs trying to get their graphene technology onto the production line. This graphene-enhanced light bulb represents the leaps and bounds that have been made in graphene research and production since 2004. A light bulb is a familiar object which museum visitors will recognise, so we included this graphene-enhanced example made by Graphene Lighting plc to help visitors to relate to the environmental impact graphene could have.

As well as displaying The Graphene Light Bulb in the exhibition, the Museum also acquired one for the permanent museum collection. I will now explore in more detail contemporary collecting in the field of science and look at some examples of where contemporary collecting happened before, during and as a legacy of the Wonder Materials exhibition.

Component DOI: http://dx.doi.org/10.15180/181004/015